TRANSFER FUNCTIONS FOR THE TEMPERATURE OF A
BODY IN THE PRESENCE OF GENERALIZED THERMAL EFFECTS

N. A. Yaryshev UDC 536.21

The transfer functions and approximate differential equations of the interrelation between the
temperature of a body and generalized thermal effects are obtained. The coefficients of the
transfer functions are found with consideration of the shape of the investigated body.

The temperature in various objects is calculated on the basis of solving the equation of heat conductiv-
ity with consideration of the geometric and thermophysical properties of the investigated body, conditions
of its heat exchange with the ambient medium, and character of the temporal change of the regime energy
factors. The complete solution of the problem of heat transfer, even with a number of simplifying prem-
ises, cannot always be obtained in a form convenient for engineering use. The indicated difficulties can
be eliminated to some extent by constructing combined solutions suitable for bodies of different shapes and
limiting the problem to the search for the characteristic temperatures, for example, central, average sur-
face, and average volume temperatures.

The body under consideration belongs to a class of convex polyhedra, and the thermophysical proper-
ties do not change with time and do not depend on temperature. The thermal regime of the body is deter-
mined by the following thermal effects:

1) temperature of the external medium t(7);
2) external energy sources whose density per unit surface of the body is equal to q(7), W/ m?;

3) internal uniformly distributed energy sources (sinks) whose density per unit volume of the body is
w(7), W/m%;

4) temperature of the medium v(7) passing through the body.

The presence of the fourth regime factor means that the body is some ordered structure with open in-
terconnecting pores. The intensity of heat transfer of the body with the external medium is characterized
by the heat-transfer coefficient o, W/ m? .deg, which retains a constant value for all portions of the body's
surface. The intensity of heat transfer with the internal medium is determined by the parameter b, W/m3
-deg, which also remains constant for all elements of the body's volume.

The integral geometric properties of the body are given by its total volume V and external surface S.

With these premises the problem of heat conductivity is linear. To simplify its formulation and solu-
tion we will henceforth use temperature u(r, 7), which is the average temperature on some surface o lo-
cated within the body. The interrelation between the averaging surface and the space coordinate r is gov-
erned by the equation

r n
a:S("R—) = Sp". @)

It is necessary to note that coordinate r is not directly related with the usual (e.g., Cartesian) coor-
dinates x, y, z; it is expedient to locate its origin at such a point within the body where the temperature
gradient is equal to zero. For bodies of a regular shape having axes or planes of symmetry, the location
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of the point of the extreme value of the temperature usually coincides with the center of gravity of the
body.

For a zero value of r the temperature-averaging surface contracts to a point, and for its maximum
value, equal to the characteristic size of the body, ¢ becomes equal to the surface of the body, i.e.,

0'1 reg = 0, G\ r=R = S.

The volume element of the body dV is found according to the relation dV = ¢dr. Problems of determining
n and R for different bodies are discussed in [1]. The interrelation between the geometric quantities is ex-
pressed by the relation

14 R

S n+1

)

On the basis of the definitions given above we can obtain the following one-dimensional equation of heat con-
ductivity for a homogeneous isotropic body:

%_ (Pu mow b N 1 b
o~ Yo rér_i\.u>+cvw+cyv )
with boundary conditions
(% 1) o
o Fou )| _ mateh 5 =0 )
and initial condition
w(r, ) 1120 =0, (5)

Applying to (3), (4), and (5) the integral Laplace transform [2], we can obtain a general relation as-
sociating the temperature transform with thermal effects:

U (p’ S) = Ye (P, S) Ze (S) -+ Yi (pr S) Zi (S) (6)

Here

1
Z,(8)=T(s)+ ;‘Q )
(7

1
Z@ =V + 5 W)

are transforms of the variables

1 1
2@ =0+ 9@, 20=0()+ 5 0. (8)

Function ze(T) and its Laplace transform Ze(s), which determine heat transfer of the body in the case
of the total effect of the temperature of the external medium and energy sources on the surface, will be
called the generalized external heat effect. Function zj(7) and its transform Z;(s), which reflect the total
effect of the internal energy factors, can be called by analogy the generalized internal heat effect.

The transforms of the effects are related with the transform of the temperature of the body by the
functions Ye(p, s) and Yj(p, s), which will be called the transfer functions for the temperature of the body
with respect to the external and internal heat effects. A noteworthy characteristic of these functions is that
they are determined only by the intrinsic parameters of the body (its dimensions, thermophysical properties,
and heat~transfer coefficient) and do not depend on the magnitude and law of variation of the regime factors.
The investigated body can be regarded as a heat system transforming the input effects zg(7) and zj(7) into
the output quantity — the temperature of the body u(p, 7).

On the basis of relation (6) we can obfain the equation for determining the transforms of the central,
average surface and average volume temperatures of the body:
Ug(8) = Yo 9(8) Ze () + Y3, 4(5) Zi (5),
Us () = Ye, s(8) Z.(8) + Vi, s(5) Z;(8), (9)
Uy () =Ye,v(8) Zo(s) + Yo, v(5) Z; (5),
which are found from (6) respectively for p = 0, p = 1, and as a result of integration over the volume of the
body with consideration of relations (1) and (2}.
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The structure of the transfer functions is shown in Table 1, where the following notations are intro-
duced:

B=uR, n=1 2+ (10)
ol R

V=T, = an
G = B (B) +B 1,2 (B (12)

If internal "convective" energy sinks are absent in the body, i.e., b= 0, formulas (L0) are simplified:
—wr=1/ %
p=wr=1/ Sk, 13)

and the heat effect z;(7) and its transform Zj(s) are determined by the relations:

2 2

R
z ()= 7 w(T), Zy(s)= Y W (s). (14)

The form of nofation for transfer function Ye and its particular cases with consideration of (13) re-
mains as before (Table 1), and function Y; is found from the equation

1 Y TN
Yi(prs)_ 52[1 —'Ye(p’ S)} - 62[1_p Clv(ﬁ)_{_ﬁ]vﬂ.(ﬁ)]'

For values of the index v =—-1/2, 0, and 1/2, i.e., values of form factor n =0, 1, and 2, we obtain
from expressions (6) and (9) rigorous solutions of the problems of heat conductivity for bodies of a canoni=-
cal shape (plate, cylinder, sphere). Transfer functions Ye and Yj accordingly change to exact transfer
functions for a plate, cylinder, and sphere, which are given in [3] or can be found from solutions in [2].

For other values of n Eq. (3) and solutions (6) and (9) are approximate and for the majority of practical prob-
lems provide an accuracy sufficient for engineering calculations [3].

(15)

The formal change from solution (6) to the true values of the temperature u{p, 7) in the presence of
continuously varying heat effects zg(7) and z;(7) can be done on the basis of Duhamel's theorem or theorem
of convolution of functions [2]

(P )= (42 (0,0) 2,(r— )8 + [ (0,8) 2 (r—0). (16)
0 1]

We note that in the theory of linear dynamic systems the functions ye and yj are usually called impulse
or weighting functions of the system, which corresponds to a special case of effects given in the form of
unit impulse functions or Dirac delta functions.

If the generalized heat effects vary in time, then despite the use of the one-dimensional equation of
heat conductivity (3) the change from Eqs. (6) and (9) to the actual temperatures is rather complicated and
the solutions obtained are not always convenient for practical use. One of the possible ways of simplifying
the problem is to replace the transfer functions (Table 1) by approximate expressions which should be sim-~
ple in form, permit changing back to the original, mainly by means of fables of operational correspondences,
and take into account the most essential properties of the initial ("exact") transfer functions, It is reason-
able to represent Ye and Yj in the form of the ratio of two functions &(p, s) and G(s), each of which does not
have singular points (poles) and can be expanded in a power series with respect to parameter s [2, 3]:

Pelp:5)
Ggs)

@, (0, 5)

Ye(p,s) = Yi(o,8) = 6 17
If in the expansion of the numerator and denominator of (17) we restrict ourselves to several terms,

in place of the initial functions Y and Y we obtain their approximate expressions, which are the ratio of

two power polynomials, i.e,, ordinary rational functions of parameter s.

For the important particular case b = 0 (@bsence of "convective" energy sinks within the body), ex-
panding functions (17) figuring in Eq, (6) and restricting ourselves to m terms in the numerator and n terms
in the denominator, we obtain: :

625



TABLE 1, Transfer Functions for Temperature of Body

Temperature

Function Ye

Function Yj

Localu(r, T)

Central ug(7T)

Average surface
ug (7))

Average volume
Uy (7)

£ @)™ 1, Bo)
G (s)
S
9VT (1)
G(s)

[ ()]
Ye‘ sls) = —_Gﬁ_—

2(v+ =B

Yelp, 8)=

Ve, ols]=

Y, v = G(s)

Y (o, 9) =f;—_,u—ye (0, 91

Yio()= % [1—Y,, 5 ()]
Y, s)= —% (1Y, 5]

Y, V(s)=~l% =Y, ()]

TABLE 2, Coefficients of Transfer Functions

Coefficients

Form factor of body

1

ay

m = n.

v n
1 1
g Tyt g Tt
Zitvia ¢ T+ma ¢
1 : 1
s 144t t 1+t
SV (FwWaE ~ ¢ IAFmGBEmaE L
Rsz R2pZ
4(14wv)a 2(1+n)a
R? R?
i1 +via S(I+na
R? R?
4(2+4+wv)a 23+n)a
Rept Righ
32(1-+v) 2+ v)a? 8(1-+n)(3+n)at
R* RA
32+ v)(24-v)a? 8(14-n)(3-+n)a?
R Rt
3224 v)(3+fv)a? 8(3+n) (5+n)a

1 —[—Ebk st
Y, (p,5) = = (18)
1 —]—Eah st
=1
E(Gk —by) st
Vil )= o5 —— : (19)

1_[_’; a, ¢

In expressions (18), (19) summation is carried out over numbers k=1,2,...,m,.

. ,n, where

The coefficients of the expansion of transfer functions (17) for the local temperature of the body u(p,

7} are found by the formulas:

a, =

626

4

14

T ok [ R \*

2T E|T(k+v+1) ¢ (T) ’ )
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by = F'(v+1)

+2£k(1 — p*) (RZ R
QBT (BT (kv +1) 4

? ) . (22)

ap —

The replacement of the transfer functions (Table 1) by their approximate expressions (18) and (19)

permits changing from partial differential equations (3) to ordinary differential equations,

Let the initial

values of u(p, 7), z¢(7), and zj(7) together with their derivatives with respect to time up to orders m and

n inclusively be equal to zero,

Then as a result of inverse transformation of Eq. (6) with consideration of

(18) and (19) we obtain

u{p, 1) +
k=1
where

d¥ 1z, (1)

drulp,v) a2z (1)
d.ck =2,(7) -+ Ebk d +Rz (a,— T' (23)

)% + 2 (e —

b=

2

1 R
Z(N)=t() +—q@); ()= + @) (24)

Similar equations can be obtained from expressions (9) for the characteristic temperatures of the
body uy(T), ug(7), and uy(7).

The number of terms of the expansion retained can vary depending on the requirements of practical
accuracy. However, for many applied problems good results are obtained already with the use of the second

approximation, whenm =1 and n = 2,

the form

In this approximation the trangfer functions for the temperature have

accordingly Eq. (23) is simplified:

u (p,'l') ’{" al

14-b,8 a a4— by (a,—by)s
YE(p’ S)= l +als+azs2 k4 Y (p! S) 1 +als+a232 ’ (25)
du (p, 1) fulpv) dz, (1) a dz; ( )
dT a2 d’l.'z (17) "I‘ bl d‘l? +Rz (al 1) Zi (17) + R’E' (az 2) - (26)

Unlike by coefficients gy do not depend on coordinate p. The values of the coefficients are given in

Table 2,

To determine the characteristic temperature of the body the function u(p, 7) in Egs. (23) and (26) is
replaced accordingly by uy(7), us(7), or uy(7), and coefficients b; and by in expressions (23), (25), and (26)

are replaced by by, g and by y (for the central temperature by 4

=b2,0 = 0).

Transfer functions (18), (19), and (25) and the differential equations of the relation between the effects
of the form (23) and (26) can be used for solving diverse problems of heat transfer.

)

BN >0
1l
]
~
=

u(p, 7), U(p, 8)
ug(7), ug(7), uv(7)
UO(S) ’ US(S) H UV(S)
Ye, Yi

Yes Vi

4

]

Iy

r

NOTATION

is the density;

is the specific heat;

are the heat conductivity and thermal diffusivify of the body;

is the time;

is the relative coordinate;

is the characteristic dimension;

is the form factor of the body;

is the Laplace transform parameter;

are the temperature of body and its Laplace transform;

are the central, average surface, and average volume temperature of body;
are the transforms of these temperatures;

are the transfer functions;

are the originals of transfer functions;

is the Biot number;

is the variable of integration;

is the cylindrical function of the second kind with real index v;
is the gamma function,
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